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2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TRriaL HSC)

Section I

10 marks

Attempt Question [I] to
Allow approximately 10 minutes for this section

Mark your answers on

the answer grid provided (labelled as page [13]).

Glossary

o Z={--,-3,-2,-1,0,1,2,3} — set of all integers.
e 7T — all positive integers (excludes zero)
e R — set of all real numbers

o C — set of all complex numbers

Questions Marks
23
1. What is the number of asymptotes on the graphs of y = — 17 1
x p—
(A) 1 (B) 2 (©€) 3 (D) 4
2. The equation 22 — 3® + 32y + 1 = 0 is an implicit function in 2 and ¥. 1
Which of the following is the expression for the gradient function?
2 2 2 2
y -z Yyt 7ty =Yy
(A) = B) —— (C) —— D) =
x4 +y x x Y x Y-+
3. The polynomial P(z) = 2* — 423 + Az + 20, where A € R, has (3 + 1) as one of its 1
Zeros.

Which of the following expression is P(z) expressed as a product of two real

quadratic factors?

(A) (2 —22+2)

(B) (*+22+2)

(2* — 62 + 10) (C) (2% —22+2) (2% +62+10)

(2% — 62 + 10) (D) (2422 +2) (* + 62 + 10)

THURSDAY AUGUST 3, 2017
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2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT Task 4 (TriaL HSC) 3

4. A particle of mass m is moving horizontally in a straight line. It experiences 1
a resistive force of magnitude 2m (v + v2) N when its speed is v metres per second.

At time ¢ seconds, the particle has a displacement of & metres from a fixed point O.

Which of the following is the correct expression for = in terms of v?

1 1 1 1
(A)x——§/1+vdv (C)x—§/1+vdv
1 1 1 1
B) z=—= d D) x=— d
(B) @ 2/1}(1+v) v (D) @ 2/v(1+v) !
5. Which of the following could be f(x) if 1

/f(x) sinz dr = — f(z) cosx + /3x2 cos z dz
(B) *

(A) 322 (C) —a3 (D) —322
6. Which of the following defines the locus of the complex number z, as sketched 1
below?
Im
3 =4
2 =4

(A) arg (%) - (C) arg (%) -

(B) arg(z+1i) = arg(z — 1 — 2i) (D) arg(z —i) = arg(z — 1 — 21)
1_ V3,
7. Multiplying a non-zero complex number by % 21 — results in a rotation about 1
% + E’L
the origin on an Argand diagram.
What is the rotation?
. U . . T
(A) Clockwise by 3 (C) Anticlockwise by T
. Ik . ) It
(B) Clockwise by D) (D) Anticlockwise by D)

NORMANHURST BOYS’ HIGH SCHOOL THURSDAY AUGUST 3, 2017



4 2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TRriaL HSC)

8. Without evaluating the integrals, which of the following is greater than zero? 1

(A) /11 tan~! (sinz) dzx (C) /11 ((ex)3 + x7) dx

1 1 .5
2x T
B d D —d
(B) /_1 sin? z o (D) /_1 oz T
9. The following is a graph of y = log, f(z) over its natural domain. The graph 1

y = log, f(x) has vertical asymptotes at z = 0, x = £1, and an upper bound of
y = log, x as © — oo.

1
\
\
\
\
\
\
\
\
\
|
T
\
1
\
\
\
\
\
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2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TriaL HSC) 5

10. A solid is formed by rotating the region enclosed by the parabola y? = 4az, its 1
vertex (0,0) and the line z = a about the y axis.

Y

/A x

Which of the following integrals gives the volume of this area by slicing?

(A) 27“/5/0&,2% dz () ﬂ/ja <a2— 12;) dz

a 4 2a 9 Z4
(B) 47T\/E/0 22 dz (D) 277/0 (a - 16a2) dz

Examination continues overleaf. ..

NORMANHURST BOYS’ HIGH SCHOOL THURSDAY AUGUST 3, 2017



6 2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TRriaL HSC)

Section 11

90 marks
Attempt Questions [11] to
Allow approximately 2 hours and 50 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available.
Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks) Commence a NEW booklet. Marks
(a) Find /6_290 cos x dz. 4
x
b Evaluate dz. 3
() | 7=
a a
(c) i. Using the substitution z = a — u, show that / f(z)dx = / fla—z)dz. 2
0 0
1
ii. Hence evaluate / z(1 — z)®7 dz, giving your answer as the simplest 2
0
fraction.
(d)  Use the substitution ¢ = tan g to evaluate 4

2 1
/ - dx
0 3—cosx—2sinx

Examination continues overleaf. ..

THURSDAY AUGUST 3, 2017 NORMANHURST BOYS’ HIGH SCHOOL



2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT Task 4 (TriaL HSC) 7

Question 12 (15 Marks) Commence a NEW booklet. Marks
(a) i. Express z = 1+ v/3i in modulus-argument form. 1

ii. Hence or otherwise, show that 27 — 64z = 0. 2
(b) Find v/6i — 8, and hence solve the equation 4

222 —(341i)24+2=0

(c) Find the complex number z = a + tb, where a,b € R, such that 2z — iz = 1 + 44. 2
(d) Sketch the region in the Argand diagram of the point z such that it satisfies all 3
of
|Arg(z)| < 3
z+z<4
|z| > 2

(e) A_B)C’D is a quadrilateral in the complex plane such that the vectors 5;1), OB )
OC and OD represent complex numbers a, b, ¢ and d respectively.

P, Q, R and S are the midpoints of AB, BC', CD and DA respectively. M and
N are midpoints of PR and QS respectively.

— —
i. Show that the vectors OM and ON both represent the complex number 2
1
Jlatb+ctd
ii. Hence explain the type of quadrilateral that PQRS is. 1

Examination continues overleaf. ..

NORMANHURST BOYS’ HIGH SCHOOL THURSDAY AUGUST 3, 2017



8 2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TRriaL HSC)
Question 13 (15 Marks) Commence a NEW booklet. Marks
(a) a, 8 and v are non-zero and the roots of the cubic equation
P+ pr4+qg=0
i. Express o + 82 + 42 in terms of p and g. 1
ii. Hence or otherwise, form a cubic equation with roots 3
g, b and
By ay ap
(b) i. Find A, B and C € R such that 3
4o =5z -7 A N Bz +C
(x—1)(x2+2+2) -1 a2+z+2
ii. Hence evaluate 2
/0 4o — b — 7
5 dx
L E-D@T212)
(c) i. Prove for all A: 5 ) 2
cos® A — 1 cos A = ZCOS3A
ii. Show that x = 2v/2cos A satisfies the cubic equation 2

iii.

3 — 6z = —2
1
2—\/5.
Hence or otherwise, find all three roots to the equation 23 — 6z +2 = 0,
correct to four decimal places.

provided cos 34 = —

Examination continues overleaf. ..

THURSDAY AUGUST 3, 2017
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2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT Task 4 (TriaL HSC) 9

Question 14 (15 Marks) Commence a NEW booklet. Marks
(a) i. Determine the real values of p for which the equation
22 2
+ =
3+p 8+p
defines
(o) an ellipse 1
(8) a hyperbola 2
ii. For the value p = —4 in the above equation, find the 2

e eccentricity
e coordinates of the foci, and
e the equations of the directrices

of the conic.

iii. Draw a neat sketch of the conic in part (ii), indicating the foci, vertices 2
and directrices.

1
(b) i. Prove that the equation of the tangent at the point (t, ;) to the hyperbola 2
xy = 11is z + t2y = 2.

ii. The tangent at a point P on the hyperbola xy = 1 meets the y axis at A, 3
and the normal at P meets the = axis at B.

Show that the equation of the locus of the midpoint of AB as P loves along
the hyperbola is

_1-y
xr = %
(c) P(acosa,bsina) and Q(acosf,bsin3) are the endpoints of a focal chord of 3
2 2
the curve ) + ‘Z—z =1
sin(a — )

Show that e = — —,
sina — sin 8

Examination continues overleaf. ..

NORMANHURST BOYS’ HIGH SCHOOL THURSDAY AUGUST 3, 2017



10 2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TRriaL HSC)
Question 15 (15 Marks) Commence a NEW booklet. Marks
(a) By using the method of cylindrical shells, find the volume of the solid generated 3
when the region bounded by the curve y = log, z, the x axis and the lines x = 1
and xz = e is rotated about the y axis.
(b) The solid ABCD is cut from a quarter cylinder of radius r as shown. Its base 3
is an isosceles AABC with AB = AC. The length of BC'is a and the midpoint
of BC is X.
The cross-sections perpendicular to AX are rectangles. A typical cross-section
is shown shaded in the diagram.
r
=
r
Find the volume of the solid ABCD.
(c) A particle of unit mass moves in a straight line and experiences a resistive force
of v +v3, where v is its velocity.
Initially, the particle is at the origin and travelling to the right with speed @
metres per second.
i. Show that the displacement of the particle is given by 2
x =tan ! @-v
1+ Qu
ii. Show that at time ¢ which has elapsed, the velocity-time relationship is 3
given by
1 2 (1 +0?
2 %\ v+ Q)
iii. Find v? as a function of time. 2
iv. Find the limiting values of v and x as t — oo. 2

Examination continues overleaf. ..

THURSDAY AUGUST 3, 2017
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2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT Task 4 (TriaL HSC) 11

Question 16 (15 Marks) Commence a NEW booklet. Marks

1—
(a) Let f(x) = % On separate one-third page diagrams, sketch the following,
x

clearly showing any asymptotes.
Loy=f()
i y=f(z])
iii. y=el®

W N N =

iv. y? = f(x). In addition, briefly describe the behaviour of the curve at = = 1.

x = t2

(b) Consider the curve defined parametrically by { 3
y =

Y

P (t1%, %)

Let P (t12, t13) and Q) (t22, t23) be two distinct points on the curve.

i. Express the equation of the curve in terms of z and y only. 1

ii. Show that the equation of the chord PQ is given by 2

(tl + tz) Yy — (t12 + t1to + t22) x + t12t22 =0

iii. Hence or otherwise, show that the equation of the tangent to the curve at 1
a point corresponding to ¢, where ¢ # 0, is given by

2y — 3tz + 1> =0
iv. Let R(z,y0) be a point in the plane such that z¢> > yo2 > 0. 4

Prove that there are exactly three tangents from R to the curve.

(Hint: differentiate the expression given in part (iii))

End of paper.

NORMANHURST BOYS’ HIGH SCHOOL THURSDAY AUGUST 3, 2017
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2017 Mathematics Extension 2 HSC Course Assessment Task 4
STUDENT SELF REFLECTION

1. In hindsight, did I do the best I can? Why

or why not?

2.  Which topics did I need more help with,

and what parts specifically?

e (5, 8, 10, 11 - Integration

e Q15(c) -
Motion)

Mechanics

3. What other parts from the feedback
session can I take away to refine my
solutions for future reference?

LAST UPDATED AUGUST 15, 2017

NORMANHURST BOYS’ HIGH SCHOOL



2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TriaL HSC) SOLUTIONS

15

Sample Band 6/E4 Responses

Section I v' [1] for correct resolution into index form.
1. (C) 2. (C) 3. (B) 4. (A) 5. (B) \/ [1] fOI’ ﬁnal answer.
6. (D) 7. (B) 8. (C)9.(A) 10. (D)
T 1—2z-1
e [ ()
Section II / -z -z
1
uestion 11 (Bhamra = - 1—z— dx
@ (Bhamnre) [ (=)
@ (4mark) (0t a
V' [1] for the correct expression by applying
integration by parts the first time. —Z0- :C)% 4 2(1 - x)% .
v’ [1] for correctly applying integration by
parts, the second time. . o
v [1] for observing the original in the second Azlternatlvely, make the substitution
application of integration by parts u*=1-z,oru=1-uz.
v’ [1] for final answer.

Let I = /6_2“” cos dx.

dv = coszx

du = —2¢"%* p=sinz

I:uv—/vdu

—e Psing — / —2¢ 2 sinx dx

‘ u=e

e 2 sing + 2 / e T sinz dx

For the rightmost integral,

2x

‘ u=-e dv =sinzx

du = —2¢"%* oy =—cosx

IT=e sing + 2 (—6_2’” cosx — 2 / e 2% cos T d%r:)

—e P ging — 2e > cosx — 4l + C4

5] = e P sing — 2e ** cosz + Oy

1
I= 56_2“” (sinz —2cosz) + C

Alternatively, let u = cosx and dv

e~2*. Correct application should result in

the same primitive.

(b) (3 marks)
e for correctly manipulation
integrand.

(c) i. (2 marks)
v'[1] for substitution transformation.
v' [1] for correct proof.

Letting ¢ = a — u,

r=a—u z=0u=
dr=—du xz=a,u=0
" /af(x) dm:/uof(a—u) (—du)
0 u

:Lf;a—mdu

= / fla—x)dz
0
by interchanging u for x.

(2 marks)
v
v

/

[1] for integrand transformation.

[1] for final answer.
1
z(1 — z)Y dz = / 220171 — ) da
0

/1 (xzow - $2018) du
0

1
|:$2018 x2019 :|

2018 2019
1 1

2018 2019
of 1

(2018)(2019)

0

NORMANHURST BOYS’ HIGH SCHOOL

LAST UPDATED AUGUST 15, 2017



16 2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TriaL HSC) SOLUTIONS

(d) (4 marks) ii. (2 marks)

v'[1] for correct ¢ transformation, including e 2" by De Moivre’s Theorem:

corresponding differential.

v 1] for simplification of the new 7 7 T T
denominator in terms of ¢. z' =2"cos ? + 7sin —

3

™ s
:128( — ; Si —>
cos 3 4+ 281n 3

v [1] for transformation into an integrand
leading to the inverse trig integral.

v' [1] for final answer.
o 064z:

64z = 64 x 2 (cosg +ising)

Letting ¢ = tan §, then x = 2tan~! ¢: =128 (cos g + ¢sin g)
r=2tan"'t x=0,t=0 Hence 27 — 64z = 0.
2
dr = dt x E,t =1
1+t 2
z 1 (b) (4 marks)
- x
/0 3—cosx —2sinw v (1] for formation of simultaneous
t=1 1 9 equations in terms of a and b.
- /to 3_1=t2 o ( > 12 di v [1] for solutions to /—8 + 6i
. 1+ 1+ v [1] for applying quadratic formula to
/ 2dt complex quadratic.
0 3+3t2—1+1t2—4t v [1] for both final solutions.
1
2dt
4T 2 . E;fa_luate \/61 —h8 = \/_—8 + (;)z L;tt}ilng
1 9 dt 2z = —8+4 6t where z = a+1tb and then
/ comparing real and imaginary parts:
o 42 —4t+1+1
1
2dt
(a+ib)*> = —8 +6i
2t —1)2+1
0 a® — b2 +i(2ab) = —8 + 6
= [tan~'(2t — 1)] sy
= tan"'(1) — tan"'(-1) = =
Tt (=) = g {ab =3 2)

Question 12 (Bhamra) Substituting (2) into (1):

at — | =
a

a* —9 = —8a?
at+8a2-9=0
z=1+V3i V3 T ? (a>+9) (a® 1) =0
= 2’3 2 a==+1 b=43

:2(cosg+ising) V=8 ¥ 6i = £(1 + 3i)

(a) i (1 mark) ) <3>2:_8

Im

ol

LAST UPDATED AUGUST 15, 2017 NORMANHURST BOYS’ HIGH SCHOOL



2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsk 4 (TriaL HSC) SOLUTIONS 17

e Solving 222 — (3 + i)z + 2 = 0 via the

quadratic formula:

(3+1i)++/(B+i)2—16

4

(3+i)+vI+6i—1—16

4
(3+4+1)£v—8+6i
4
(341) £ (14 3i)
4
_3+i+1+3i

- 4
C34i—-1-3i 1

2T T2

21

(¢) (2 marks) Let z = a + b,

2z —iz=14+4

2a — ib) — i(a +ib) = 1 + 4i
2a — 2ib—ai+b=1+41
20+ b —i(a +2b) = 1+ 4i

Equating real and imaginary parts,

2+b=1 (1)
—a—2b=4 (2)

Multiplying (1) by 2, and adding to (2):

{4a+2b:2 (1) x 2

—a—2b=4 (2)
3a =06
a=2

Substitute into (2):

—2-2b=4
—2b=6
b=-3
2 =2-3%

(d) (3 marks)

e |Arg(z)| < § draw straight lines angled

at % to positive x axis

z +Z < 4: results in region 2z < 4
|z| > 2: region outside the circle of

radius 2, centre origin

=141

Im

~

(2.2v3)

w
|
I

\\
\
\
l‘.’)
|
T
.=
/@///A&

/
1 .
// / ‘:
8 L R
o1 g
\ -1+ N\ \§
N \
\?"ai%
34 \
% (2.-2v8)
_4 €1 N

(2 marks)

e Similarly, OR is represented by

%(c+d)

NORMANHURST BOYS’ HIGH SCHOOL
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18 2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsK 4 (TriaL HSC) SOLUTIONS

e As M is the midpoint of PR,

—

1l /— —
0M:§(0P+OR)
1/1 1

1
:Z(a+b+c+d)

° ]_\7__18 the midpoint of CTS”), and
ON represents

N 1

0N:§(5§+E)T§)

= (%(b—irc)—i—%(a—i—d))

1
= (a+b+c+ad)

ii. (1 mark) As M and N are
coincident, the diagonals of PQRS
bisect each other. PQRS is a
parallelogram.

Question 13 (Sharma)
(a) i. (1 mark)
23+ 02 +pr+qg=0

With roots «, 8 and ~:

(@+B+7)%=a®+ 8% +7° +2(af + ay + 7)
o+ B4yt = (a+ B+7)* — 2(aB + ay + B7)

Finding the elementary symmetric
functions,

a+B+v=0
p
af+pytay=7=p
__1__
afy=-1=-4¢

s+ 2+ 97 = (0) - 2(p) = ~2p

ii. (3 marks)
v' [1] for identifying new roots of the
new equation.

v [1] for correct polynomial with
roots a2, 5% and ~2.

v [1] for correct polynomial with

o

roots = etc.

a o B _ P v _

By aBy ay aBy af  aBy

Hence, new equation will have roots
@ By
—q —q —q

In 22 +pr+q = 0, let 2 — /x,

which produces roots a2, 2 and v2:

3
(Vz)"+p(Vz) +¢=0
2/ +pvr+q=0
Va(z +p) = —q
w(z+p)° = ¢’
T (m2 + 2pzx —I—p2) = q2
23+ 2t +pPr—¢* =0

Now let x — —gz to produce the

required roots:

(—qz)’ +2p (—qx)* + p*(—qz) — ¢* = 0
—¢°2® + 2p*a® — p*qz — ¢* =0
P — 2pga? + P4 g =0

(3 marks)

v' 1] for each correct constant.

4x? — b —7 A Bz+C
(x—1D(x24+2+4+2) -1 z22+zx+2
4a® —bx —T=Al2*+2+2)+ (Bx+C)(z —1)

e Letx=1,
4-5-T=A1+1+2)40
4A = -8
A=-2
o Letx=0:
—7=-2(00+0+2)+(B(0)+C)(0—-1)
—7T=-4-C
C=3
o Letz=2,

4(2%) —5(2) -7
=-22+2+2)+(2B+3)(2-1)
16-10—-7=—-16+2B +3

2B =12

B=6

LAST UPDATED AUGUST 15, 2017
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2017 MATHEMATICS EXTENSION 2 HSC COURSE ASSESSMENT TAsk 4 (TriaL HSC) SOLUTIONS 19

) 4z% — 50— 7 -2
(z—-1)(x2+x+2)

n 6x + 3
r—1 224+z+2

ii. (2 marks)
v' 1] for correct integral.
v 1

] for correct final answer.

/0 4o — b5 =7
dx
-1 (2% +z+2)

:/_01 (_3:1+ 3(2x+1)> "

z2+x+2
= —2[In(z—1))°, +3 In (m2 +x+ 2)]21

By symmetry,

0 3
2 2
/ — dr = / dz
1 z—1 o z—1
(Alternatively, use absolute values
inside the logarithm)

0 2 2z +1
/_1 <_x—1 + j§f;+)2> du
= 2[In(z — 1)]5 + 3 [In (z* —I—:c+2)](il
=2In2+3(In2—In(1 —1+2))
=2In2

iii.

(2 marks)

cos 3A
= cos(A + 24)
= cos Acos2A —sin Asin2A
=cos A (2 cos? A — 1) —sin A (2sin A cos A)
=2cos® A —cos A—2 (1 —cosQA) cos A
=2cos® A —cos A—2cos A+ 2cos® A
=4cos® A—3cos A

1 3
1 cos3A = cos® A — 1 cos A

use De Moivre’s
theorem to expand and equate real
parts to obtain required result.

Alternatively,

ii. (2 marks)
v’ [1] for 3 — 62 in terms of cos A.

v’ [1] for correctly showing required
result.

z=2V2cos A
23 = 16v2cos® A
ca®— 6z =16v2cos® A — 6 (2\/5005 A)
= 16v2cos® A — 12v/2 cos A
=42 (4 cos® A — 3 cos A)
=4+/2cos 34

. N
If cos3A = VoL

2% — 6 :%%(—ﬁ)

=2
Hence 22 — 6z = —2 has a solution
of x = 2v/2cos A provided cos 34 =
1
S 2V2°
marks)

(2
v' [1] for first quadrant related angle.
v' [1] for all three roots.

1
cos3A = ——~
22
3A=1.93...
3A = 193... lies in the 2nd
quadrant. The first quadrant

(related) angle is

m—193.-.--=1.209---
Hence,
3A=m—-1.209--- (2nd quadrant)
or m+1.209---  (3rd quadrant)
or 3mr —1.209--- (6th quadrant)
e m—1209--- 74+1.209 37 —1.209---
B 3 3 3
—1.209---
oo =2v2cos <%> ~ 2.2618---
1.209---
or 2v/2 cos (%) ~ 0.3399 -
—1.209- -
or 2v/2 cos (%) ~ —2.6017- -

NORMANHURST BOYS’ HIGH SCHOOL
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Question 14 (Sharma)
(a) i.(a) (1 mark)
2 2
@ LY
3+p 8+p

If the conic is an ellipse, then
both of 3+p >0 and 8+ p > 0:

3+p>0 8+p>0
p>—3 p>—8
Hence p > —3 for both

inequalities to be satisfied.

(2 marks)

v' [1] for the first condition p >
—3 or p < —8, and explanation
of which represents the most
restrictive condition.

v [1] for rejecting the invalid
solution.

If the conic is a hyperbola,

then either of the following pairs

of inequalities must hold true
simultaneously:

— 34+p>0and 8+p<0
p>—-3and p < —8

which is not possible to hold
simultaneously.
— 3+p<0and 8+p>0

p<—3andp> -8

Hence —8 < p < —3.

ii. (2 marks)
v' [-1] for each new error.

2

T Y

i Z -1
1+4
2

Yy 2

A :1
I T

Applying relationship for eccentricity:

b2:a2(e2—1)
1=4(e* - 1)
=2

iii.

ii.

2 and

Finding the foci with a =
V5.
5

e =

S (0, +ae) = (O,:I:\/g)

Finding the directricies:

40 2 n 4
y= e V5 5
2
(2 marks)
v' [-1] for each new error.
)

(2 marks)
1
y=—-
x
dy 9 1
— = —Zx —_
dx z=t 12

Equation of the tangent at (t, %) via
the point-gradient formula:

1
—%_ l
r—t t2
2y —t=—x+t
T+ t2y =2t
(3 marks)
v’ [1] for correct equation of the

normal at (t, %)
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v' [1] for correct coordinates of A and (c) (3 marks)

B. v’ [1] for obtaining mpg.
V' [1] for required proof. v' [1] for using the point gradient formula
e The equation of the normal for the equation of PQ.
at (t,1) via the point-gradient v [1] for final solution.
formula:
y—1 ) Tp=acosa xg = acosf
t_
x_t_t yp =bsina  yg = bsinf
e
Y t The gradient of the chord PQ:
ty—1=tzr—t* bsin § — bsi b (sin B — si
sin 8 — bsin « sin 8 — sin «
t3x—ty:t4—1 mpgQ = = ( )
acosfB —acosa  a(cos S — cosa)
e At x =0, the tangent is at Using the point-gradient formula, the
equation of P is:
2,
0417y =2t y—bsina  b(sinf —sina)
y:g x—acosa  a(cos B — cosa)
t
A <0 2) As the focal chord passes through (ae, 0):
. '3
—bsina  b(sinf —sina)
e At y =0, the normal is at ae —acosa  a(cosf — cosa)
—sina(cos f — cosa) = (e — cos ) (sin B — sin «)
Br—0=t*-1 — sin acos B + sin avcos o
e= - - + cosa
41 sin 5 — sin «
A _ —sinacos B + sinecos a + sin f cos a — sin-ecos
-1 B sin 8 —sin«
B( 3 ’0) _ sinfcosa —sinacos
N sin 5 — sin «
e The midpoint of AB: = sin(f—a)
sin 8 — sin «
5L 4+0 240\ /ti-11
2 72 )\ 23 Tt
th—1 1
T = — = —
M 203 Ym ;

Substituting t = % into the =z

equation:
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Question 15 (Lam)

(a) (3 marks)

V' [1] for the correct working, leading to the

curved surface area of the cylinder.

v' [1] for the applying integration by parts.

v' [1] for the final answer.

(LEF

oo —— [
\ . e
\
\

r=x

e Height of each individual cylinder:
h=y

e Hence,

= 2w2xlnx5:c

Taking dx — 0:

r=e
V =2r li Inz§
ﬂé;g(];x nxdx

(&
:27r/ zlnx dx
1

u=Ilnx dv==x

Surface area of cylinder: SA = 27rh
Radius of each individual cylinder:

(3 marks)

v’ [1] for similarity ratio relationship in
AABC.

v [1] for correct area expression.

v [1] for final answer.

From the diagram: at a point =z
along the horizontal, the corresponding
vertical value is y. As it is a quarter
circle,

y=\/r2 — 22

which becomes the height of the
rectangle.
Drawing AABC' in tz}‘lle 2D plane:

T
I
[ ¥
B X C
— 5 —>
From similar triangles,
r x
T Tz
2 2
C2r _ 2
a4z
ar
z=—
,

From the area of the rectangles,

A:bh:zy:% r2 — 2
r
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the volume is the sum of these areas:

r=r

V = lim Adx = %\/TQ—.%'QCL%'
0 T

6x—0
v z=0

2 (og) [ 20 a
?

(c) i. (2 marks)
v [1] for separation of variables to
obtain tan~'x = —t + C;.

v [1] for final required result.

F:mi:—(v+v3)

Asm =1,
. dv 3
x:v%:—(v—i-v)
1
dv = —dx
1+ v?

Integrating both sides,
tan v = —z + C
Whent=0,v=0Q, z=0.

SO = tan~! Q

sr=tan 'Q —tan"tw

Letting
| a1
a=tan " Q B =tan v
tana = @Q tan 8 = v

Cotanz = tan (o — )
tan o — tan 8
1+ tanatan 8
Q—v

1+ Qu

R -1 Q-
c.x = tan <1+Qv>

(3 marks)

v’ [1] for correct constants in the
partial fraction decomposition.

v [1]  for obtaining the correct
primitive.

v' [1] for final required result.

d
d—;}:—v—vg
d
B
v (1+v?)

Applying the partial fraction
decomposition,

1 A Bv+C
vi+0?) v 1
XU(I;'UQ)
1=A(1+v*) +v(Bv+0)

¢ When v = 0, A = 1 by
inspection.

e Whenv=1,
1=11+4+1)+1(B+C)
1=24+B+C
B+C=-1

e When v =2,

1=11+4+4)+2(2B+0C)
1=5+4B+2C
4B+2C =—4
2B+ C = -2

e Solving simultaneously,

[sctm =] G-rie) @
/
= —dt

1
lnv—iln(1+v2) =—t+Cy

NORMANHURST BOYS’ HIGH SCHOOL
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When t =0, v=Q: Question 16 (Lam)

=InQ - %ln(l—l—Qz)
Inv — %ln (1 + 1)2) (a) i. (1 mark)

:—t+1nQ—%1n(1+Q2)

t=InQ —Inv -2 1
2 2

+5 (I (1+0%) —In (1+ Q%) 0

Q 1 1+ v? T
—In<+ -1

ny T 1r o2

1. Q* 1 1402

2nv2+2n<1+Q2) y
_1 Q% (1+?)
2 21+ QY 2

1,,

iii. (2 marks)

V' [1] for €' as the subject.
v

1] for final result required.

oL (PO
2 G+Q%

2(1
v (1 +@%) ii. (2 marks)
w_ @0+0°)
v? (14 Q?)
xv2(14+Q?2) Y= f (’x‘)
2?4 2Q%? = Q2 + Q%
v? (e +e*Q* — Q?) = Q?
2 _ Q2 we—2t y
= €2t (1 + Q2) _ Q2 xe—2t
2,2
(1+Q2) — Q22
iv. (2 marks) L L
—4 = -1 1
t—o0,e " =0 ;i:::ii*—k—k 7777777777
0 RNO
2
v — =0 y
2
QO _OQ —?\>\ T
T — tan (1—|—Q(O)> =tan" " Q _4\\77
I
]
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iii. (2 marks)
V' [-1] for each new error/feature not
shown. Features are:

e Shape (both branches)

e Open circle at * = 0 for

negative branch

e y asymptote of y = *

€

_ J@

Asymptotes:

e I — OO0

iv. (3 marks)
v' [-1] for each new error/feature not
shown. Features are:
e Shape (both branches)
e Smooth curve at (1,0)
e 1 asymptote of x =0

v [1] for description of the behaviour
at x = 1, based on graph drawn.

Hence the domain is 0 < = < 1.
e Also, the other branch is

y=—f()

Same domain, but below z axis.

e At x = 1, the curve reaches its
maximum z value/at the upper
limit of its domain and has a
vertical tangent.

NORMANHURST BOYS’ HIGH SCHOOL
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ii.

iii.

iv.

(1 mark)
v [0] if y = zy/z (without & symbol)

r=t> =z23=15
y:t3 :>y2:t6

Equating and  removing the
parameter,

(2 marks)

Finding the gradient of PQ:

1 — 1o

t12 — t9?

(3] (002 4 bty + t2?)
1T (1)

. t12 + tito + to?

B t1 + 12

mPQ =

Using the point-gradient formula,

y— 13 _ t12 + titg + to?
x — t12 t1 + to

(y—t1°) (1 +t2) = (z = 02%) (1* + tata + 12°)

y (t1 +t2) —%—}1}6

=x (t12 + t1to + 7522)

—P{{—%— t1ty?

St +t)y — (t12 + t1to + 7522) T+ t%% =0

(1 mark) When t; = t3, the chord
becomes a tangent.

2ty — (t12 + t12 + t12) x + t14 =0
21y — 3t 2z + 11 =0
2 —3tr+t3=0

(4 marks)

v’ [1] for differentiating w.r.t. ¢ and
checking for stationary points.

v [1] for identifying cubic in terms
of t will have three roots via
fundamental theorem of algebra.

v [1] each for testing values of

f (/o).

v [1] for final reasoning why there are
three real roots and therefore three
unique tangents.

Tangent to any point R (zo,¥o),
where 203 > yo? > 0 is

3 —3txg+2yp =0

Letting f(t) = t>—3txzo+2yo. There
are up to three unique solutions to
this equation in terms of ¢. Need
all three to be real and no complex
conjugate pairs. Differentiating,

f(t) =3t = 3z9 =3 (t* — x0)

Hence stationary points are located
at t = £,/xg. Check actual f (on)
and f (—«/xo)Z

f (Vo) = (Vao)® = 3 (y/Z0) 70 + 2u0
= —2x0\/T0 + 20

= —2v/z03 + 2yg
=2 (yo - \/95—03)
As x0® > 192 > 0, then Vzo3 > yo
" f (Vo) <0
Testing f (—\/aTo),

f (=) = (=/@0)” = 3 (=/Z0) 0 + 2yo

= 2x0/To + 2y0
= 2V 7o + 2o
=2 (\/ 203 — y0>

As 203 > yo? > 0, then vzo3 > 1o

L (=Vw0) >0

In f(t), one of the y values of the
stationary points is negative and the
other is the positive. Hence they are
on opposing sides of the horizontal
axis, and t3 — 3tz +y = 0 always
has three real solutions for all values
of (z0,y0) where 293 > yo? > 0 and
three unique tangents.
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