MATHEMATICS EXTENSION 2

2017 HSC Course Assessment Task 4 (Trial HSC) Thursday August 3, 2017

General instructions

- Working time 3 hours. (plus 5 minutes reading time)
- Write using blue or black pen. Where diagrams are to be sketched, these may be done in pencil.
- NESA approved calculators may be used.
- Attempt all questions.
- At the conclusion of the examination, bundle the booklets used in the correct order after this paper, tie into one bundle with the string provided and hand to examination supervisors.
- A NESA Reference Sheet is provided.

(SECTION I)

• Mark your answers on the answer grid provided (on page 13)

(SECTION II)

- Commence each new question on a new booklet. Write on both sides of the paper.
- All necessary working should be shown in every question. Marks may be deducted for illegible or incomplete working.

NESA STUDENT #:	# BOOKLETS USED:
Class (please \checkmark)	
○ 12MAT.1 – Mrs Bhamra	\bigcirc 12MAT.2 – Mr Lam

Marker's use only.

indirect by discounty.								
QUESTION	1-10	11	12	13	14	15	16	Total
MARKS	10	15	15	15	15	15	15	100

Section I

10 marks

Attempt Question 1 to 10

Allow approximately 10 minutes for this section

Mark your answers on the answer grid provided (labelled as page 13).

Glossary

- $\mathbb{Z} = \{\cdots, -3, -2, -1, 0, 1, 2, 3\}$ set of all integers.
- \mathbb{Z}^+ all positive integers (excludes zero)
- \mathbb{R} set of all real numbers
- \mathbb{C} set of all complex numbers

Questions Marks

- 1. What is the number of asymptotes on the graphs of $y = \frac{x^3}{x^2 1}$?
 - (A) 1 (B) 2 (C) 3 (D) 4
- **2.** The equation $x^3 y^3 + 3xy + 1 = 0$ is an implicit function in x and y.

Which of the following is the expression for the gradient function?

(A)
$$\frac{y^2 - x}{x^2 + y}$$
 (B) $\frac{y^2 + x}{x^2 - x}$ (C) $\frac{x^2 + y}{y^2 - x}$ (D) $\frac{x^2 - y}{y^2 + x}$

3. The polynomial $P(z) = z^4 - 4z^3 + Az + 20$, where $A \in \mathbb{R}$, has (3+i) as one of its zeros.

Which of the following expression is P(z) expressed as a product of two real quadratic factors?

(A)
$$(z^2 - 2z + 2)(z^2 - 6z + 10)$$
 (C) $(z^2 - 2z + 2)(z^2 + 6z + 10)$

(B)
$$(z^2 + 2z + 2)(z^2 - 6z + 10)$$
 (D) $(z^2 + 2z + 2)(z^2 + 6z + 10)$

4. A particle of mass m is moving horizontally in a straight line. It experiences a resistive force of magnitude $2m(v+v^2)$ N when its speed is v metres per second.

1

At time t seconds, the particle has a displacement of x metres from a fixed point O.

Which of the following is the correct expression for x in terms of v?

(A)
$$x = -\frac{1}{2} \int \frac{1}{1+v} dv$$

(C)
$$x = \frac{1}{2} \int \frac{1}{1+v} dv$$

(B)
$$x = -\frac{1}{2} \int \frac{1}{v(1+v)} dv$$

(D)
$$x = \frac{1}{2} \int \frac{1}{v(1+v)} dv$$

5. Which of the following could be f(x) if

1

1

$$\int f(x)\sin x \, dx = -f(x)\cos x + \int 3x^2\cos x \, dx$$

- (A) 3x
- (B) x^3
- (C) $-x^3$
- (D) $-3x^2$
- **6.** Which of the following defines the locus of the complex number z, as sketched below?

- (A) $\arg\left(\frac{z-i}{z-1-2i}\right) = \pi$
- (C) $\arg\left(\frac{z+i}{z-1-2i}\right) = \pi$
- (B) $\arg(z+i) = \arg(z-1-2i)$
- (D) $\arg(z i) = \arg(z 1 2i)$
- 7. Multiplying a non-zero complex number by $\frac{\frac{1}{2} \frac{\sqrt{3}}{2}i}{\frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}}i}$ results in a rotation about the origin on an Argand diagram.

What is the rotation?

(A) Clockwise by $\frac{\pi}{12}$

(C) Anticlockwise by $\frac{\pi}{12}$

(B) Clockwise by $\frac{7\pi}{12}$

(D) Anticlockwise by $\frac{7\pi}{12}$

1

1

- **8.** Without evaluating the integrals, which of the following is greater than zero?
 - (A) $\int_{-1}^{1} \tan^{-1} (\sin x) \ dx$
- (C) $\int_{-1}^{1} \left((e^x)^3 + x^7 \right) dx$

 $(B) \int_{-1}^{1} \frac{2x}{\sin^2 x} \, dx$

- (D) $\int_{-1}^{1} \frac{x^5}{\cos^3 x} dx$
- **9.** The following is a graph of $y = \log_e f(x)$ over its natural domain. The graph $y = \log_e f(x)$ has vertical asymptotes at x = 0, $x = \pm 1$, and an upper bound of $y = \log_e x$ as $x \to \infty$.

Which of the following is the correct expression for f(x)?

$$(A) \ \ y = x - \frac{1}{x}$$

(C)
$$y = -\frac{1}{x}$$

(B)
$$y = x + \frac{1}{x}$$

(D)
$$y = \frac{1}{x}$$

1

10. A solid is formed by rotating the region enclosed by the parabola $y^2 = 4ax$, its vertex (0,0) and the line x = a about the y axis.

Which of the following integrals gives the volume of this area by *slicing*?

$$(A) 2\pi\sqrt{a} \int_0^a z^{\frac{3}{2}} dz$$

(C)
$$\pi \int_0^{2a} \left(a^2 - \frac{z^4}{16a^2} \right) dz$$

(B)
$$4\pi\sqrt{a}\int_{0}^{a}z^{\frac{3}{2}}dz$$

(D)
$$2\pi \int_0^{2a} \left(a^2 - \frac{z^4}{16a^2} \right) dz$$

Section II

90 marks

Attempt Questions 11 to 16

Allow approximately 2 hours and 50 minutes for this section.

Write your answers in the writing booklets supplied. Additional writing booklets are available. Your responses should include relevant mathematical reasoning and/or calculations.

Question 11 (15 Marks)

Commence a NEW booklet.

Marks

(a) Find
$$\int e^{-2x} \cos x \, dx$$
.

3

4

(b) Evaluate
$$\int \frac{x}{\sqrt{1-x}} dx$$
.

- (c) i. Using the substitution x = a u, show that $\int_0^a f(x) dx = \int_0^a f(a x) dx$.
 - ii. Hence evaluate $\int_0^1 x(1-x)^{2017} dx$, giving your answer as the simplest fraction.

(d) Use the substitution $t = \tan \frac{x}{2}$ to evaluate

4

2

$$\int_0^{\frac{\pi}{2}} \frac{1}{3 - \cos x - 2\sin x} \, dx$$

Question 12 (15 Marks)

Commence a NEW booklet.

Marks

(a) i. Express $z = 1 + \sqrt{3}i$ in modulus-argument form.

1

ii. Hence or otherwise, show that $z^7 - 64z = 0$.

2

(b) Find $\sqrt{6i-8}$, and hence solve the equation

4

 $\mathbf{2}$

1

$$2z^2 - (3+i)z + 2 = 0$$

- (c) Find the complex number z=a+ib, where $a,b\in\mathbb{R}$, such that $2\overline{z}-iz=1+4i$.
- (d) Sketch the region in the Argand diagram of the point z such that it satisfies all of

$$\begin{cases} |\operatorname{Arg}(z)| < \frac{\pi}{3} \\ z + \overline{z} < 4 \\ |z| > 2 \end{cases}$$

- (e) \overrightarrow{ABCD} is a quadrilateral in the complex plane such that the vectors \overrightarrow{OA} , \overrightarrow{OB} , \overrightarrow{OC} and \overrightarrow{OD} represent complex numbers a, b, c and d respectively.
 - P, Q, R and S are the midpoints of AB, BC, CD and DA respectively. M and N are midpoints of PR and QS respectively.
 - i. Show that the vectors \overrightarrow{OM} and \overrightarrow{ON} both represent the complex number

$$\frac{1}{4}(a+b+c+d)$$

ii. Hence explain the type of quadrilateral that PQRS is.

(c)

Question 13 (15 Marks)

Commence a NEW booklet.

Marks

(a) α , β and γ are non-zero and the roots of the cubic equation

$$x^3 + px + q = 0$$

i. Express $\alpha^2 + \beta^2 + \gamma^2$ in terms of p and q.

_

ii. Hence or otherwise, form a cubic equation with roots

3

1

$$\frac{\alpha}{\beta\gamma}$$
, $\frac{\beta}{\alpha\gamma}$ and $\frac{\gamma}{\alpha\beta}$

(b) i. Find A, B and $C \in \mathbb{R}$ such that

3

 $\mathbf{2}$

 $\mathbf{2}$

$$\frac{4x^2 - 5x - 7}{(x - 1)(x^2 + x + 2)} \equiv \frac{A}{x - 1} + \frac{Bx + C}{x^2 + x + 2}$$

ii. Hence evaluate

$$\int_{-1}^{0} \frac{4x^2 - 5x - 7}{(x - 1)(x^2 + x + 2)} dx$$

i. Prove for all A:

$$\cos^3 A - \frac{3}{4}\cos A = \frac{1}{4}\cos 3A$$

ii. Show that $x = 2\sqrt{2}\cos A$ satisfies the cubic equation

2

$$x^3 - 6x = -2$$

provided
$$\cos 3A = -\frac{1}{2\sqrt{2}}$$
.

iii. Hence or otherwise, find all three roots to the equation $x^3 - 6x + 2 = 0$, correct to four decimal places.

 $\mathbf{2}$

Question 14 (15 Marks)

Commence a NEW booklet.

Marks

(a) i. Determine the real values of p for which the equation

$$\frac{x^2}{3+p} + \frac{y^2}{8+p} = 1$$

defines

$$(\alpha)$$
 an ellipse 1

$$(\beta)$$
 a hyperbola 2

- ii. For the value p = -4 in the above equation, find the
 - eccentricity
 - coordinates of the foci, and
 - the equations of the directrices

of the conic.

- iii. Draw a neat sketch of the conic in part (ii), indicating the foci, vertices and directrices.
- (b) i. Prove that the equation of the tangent at the point $\left(t, \frac{1}{t}\right)$ to the hyperbola xy = 1 is $x + t^2y = 2t$.
 - ii. The tangent at a point P on the hyperbola xy = 1 meets the y axis at A, and the normal at P meets the x axis at B.

Show that the equation of the locus of the midpoint of AB as P loves along the hyperbola is

$$x = \frac{1 - y^4}{2y}$$

(c) $P(a\cos\alpha, b\sin\alpha)$ and $Q(a\cos\beta, b\sin\beta)$ are the endpoints of a focal chord of the curve $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.

Show that $e = \frac{\sin(\alpha - \beta)}{\sin \alpha - \sin \beta}$.

Question 15 (15 Marks)

Commence a NEW booklet.

Marks

- By using the method of cylindrical shells, find the volume of the solid generated 3 (a) when the region bounded by the curve $y = \log_e x$, the x axis and the lines x = 1and x = e is rotated about the y axis.
- (b) The solid ABCD is cut from a quarter cylinder of radius r as shown. Its base 3 is an isosceles $\triangle ABC$ with AB = AC. The length of BC is a and the midpoint of BC is X.

The cross-sections perpendicular to AX are rectangles. A typical cross-section is shown shaded in the diagram.

Find the volume of the solid ABCD.

(c) A particle of unit mass moves in a straight line and experiences a resistive force of $v + v^3$, where v is its velocity.

Initially, the particle is at the origin and travelling to the right with speed Qmetres per second.

i. Show that the displacement of the particle is given by

$$x = \tan^{-1}\left(\frac{Q-v}{1+Qv}\right)$$

Show that at time t which has elapsed, the velocity-time relationship is 3 given by

$$t = \frac{1}{2} \log_e \left(\frac{Q^2 (1 + v^2)}{v^2 (1 + Q^2)} \right)$$

Find v^2 as a function of time. iii.

 $\mathbf{2}$

Find the limiting values of v and x as $t \to \infty$.

Examination continues overleaf...

 $\mathbf{2}$

 $\mathbf{2}$

Question 16 (15 Marks)

Commence a NEW booklet.

Marks

(a) Let $f(x) = \frac{1-x}{x}$. On separate one-third page diagrams, sketch the following, clearly showing any asymptotes.

i.
$$y = f(x)$$

ii.
$$y = f(|x|)$$

iii.
$$y = e^{f(x)}$$

iv. $y^2 = f(x)$. In addition, briefly describe the behaviour of the curve at x = 1.

(b) Consider the curve defined parametrically by $\begin{cases} x = t^2 \\ y = t^3 \end{cases}$.

Let $P(t_1^2, t_1^3)$ and $Q(t_2^2, t_2^3)$ be two distinct points on the curve.

i. Express the equation of the curve in terms of x and y only.

1

ii. Show that the equation of the chord PQ is given by

 $\mathbf{2}$

$$(t_1 + t_2) y - (t_1^2 + t_1 t_2 + t_2^2) x + t_1^2 t_2^2 = 0$$

iii. Hence or otherwise, show that the equation of the tangent to the curve at a point corresponding to t, where $t \neq 0$, is given by

1

$$2y - 3tx + t^3 = 0$$

iv. Let $R(x_0, y_0)$ be a point in the plane such that $x_0^3 > y_0^2 > 0$.

4

Prove that there are exactly three tangents from R to the curve.

(*Hint*: differentiate the expression given in part (iii))

End of paper.

2017 Mathematics Extension 2 HSC Course Assessment Task 4 STUDENT SELF REFLECTION

1.	In hindsight, did I do the best I can? Why or why not?	• Q15(a)(b) - Volumes
		• Q15(c) - Mechanics (Resisted Motion)
2.	Which topics did I need more help with, and what parts specifically?	
	• Q5, 8, 10, 11 - Integration	
		• Q1, 2, 9, $16(a)$ - Graphs
	$\bullet~$ Q6, 7, 12 - Complex Numbers	
		3. What other parts from the feedback session can I take away to refine my
		solutions for future reference?
	• Q3, 13, 16(b) - Polynomials	
	• Q14 - Conics	

Sample Band 6/E4 Responses

Section I

1. (C) **2.** (C) **3.** (B) **4.** (A) **5.** (B)

6. (D) 7. (B) 8. (C) 9. (A) 10. (D)

Section II

Question 11 (Bhamra)

(a) (4 marks)

✓ [1] for the correct expression by applying integration by parts the first time.

✓ [1] for correctly applying integration by parts, the second time.

✓ [1] for observing the original in the second application of integration by parts

 \checkmark [1] for final answer.

Let
$$I = \int e^{-2x} \cos x \, dx$$
.

$$\begin{vmatrix} u = e^{-2x} & dv = \cos x \\ du = -2e^{-2x} & v = \sin x \end{vmatrix}$$

$$I = uv - \int v \, du$$

$$= e^{-2x} \sin x - \int -2e^{-2x} \sin x \, dx$$

$$= e^{-2x} \sin x + 2 \int e^{-2x} \sin x \, dx$$

For the rightmost integral,

$$\begin{vmatrix} u = e^{-2x} & dv = \sin x \\ du = -2e^{-2x} & v = -\cos x \end{vmatrix}$$

$$\therefore I = e^{-2x} \sin x + 2 \left(-e^{-2x} \cos x - 2 \int e^{-2x} \cos x \, dx \right)$$

$$= e^{-2x} \sin x - 2e^{-2x} \cos x - 4I + C_1$$

$$5I = e^{-2x} \sin x - 2e^{-2x} \cos x + C_1$$

$$I = \frac{1}{5} e^{-2x} \left(\sin x - 2 \cos x \right) + C$$

Alternatively, let $u = \cos x$ and $dv = e^{-2x}$. Correct application should result in the same primitive.

(b) (3 marks)√ [1] for correctly manipulation of

 \checkmark [1] for correct resolution into index form.

 \checkmark [1] for final answer.

$$\int \frac{x}{\sqrt{1-x}} dx = -\int \left(\frac{1-x-1}{\sqrt{1-x}}\right) dx$$

$$= -\int \left(\sqrt{1-x} - \frac{1}{\sqrt{1-x}}\right) dx$$

$$= -\int \left((1-x)^{\frac{1}{2}} + (1-x)^{-\frac{1}{2}}\right) dx$$

$$= \frac{2}{3}(1-x)^{\frac{3}{2}} + 2(1-x)^{\frac{1}{2}} + C$$

Alternatively, make the substitution $u^2 = 1 - x$, or u = 1 - x.

(c) i. (2 marks)

 \checkmark [1] for substitution transformation.

 \checkmark [1] for correct proof.

Letting
$$x = a - u$$
,

$$x = a - u \quad x = 0, u = a$$

$$dx = -du \quad x = a, u = 0$$

$$\therefore \int_0^a f(x) \, dx = \int_{u=a}^{u=0} f(a - u) (-du)$$

$$= \int_0^a f(a - u) \, du$$

$$= \int_0^a f(a - x) \, dx$$

by interchanging u for x.

 $\begin{pmatrix} x \end{pmatrix} \begin{pmatrix} 2 \text{ marks} \end{pmatrix}$ $\sqrt{[1]}$ for integrand transformation.

 \checkmark [1] for final answer.

$$\int_0^1 x(1-x)^{2017} dx = \int_0^1 x^{2017} (1-x) dx$$

$$= \int_0^1 \left(x^{2017} - x^{2018}\right) dx$$

$$= \left[\frac{x^{2018}}{2018} - \frac{x^{2019}}{2019}\right]_0^1$$

$$= \frac{1}{2018} - \frac{1}{2019}$$

$$= \frac{1}{(2018)(2019)}$$

integrand.

- (d) (4 marks)
 - \checkmark [1] for correct t transformation, including corresponding differential.
 - \checkmark [1] for simplification of the new denominator in terms of t.
 - ✓ [1] for transformation into an integrand leading to the inverse trig integral.
 - \checkmark [1] for final answer.

Letting $t = \tan \frac{x}{2}$, then $x = 2 \tan^{-1} t$:

$$x = 2 \tan^{-1} t x = 0, t = 0$$

$$dx = \frac{2}{1+t^2} dt x = \frac{\pi}{2}, t = 1$$

$$\int_0^{\frac{\pi}{2}} \frac{1}{3 - \cos x - 2 \sin x} dx$$

$$= \int_{t=0}^{t=1} \frac{1}{3 - \frac{1-t^2}{1+t^2} - 2\left(\frac{2t}{1+t^2}\right)} \cdot \frac{2}{1+t^2} dt$$

$$= \int_0^1 \frac{2 dt}{3 + 3t^2 - 1 + t^2 - 4t}$$

$$= \int_0^1 \frac{2 dt}{4t^2 - 4t + 2}$$

$$= \int_0^1 \frac{2 dt}{4t^2 - 4t + 1 + 1}$$

$$= \int_0^1 \frac{2 dt}{(2t - 1)^2 + 1}$$

$$= \left[\tan^{-1}(2t - 1)\right]_0^1$$

$$= \tan^{-1}(1) - \tan^{-1}(-1) = \frac{\pi}{2}$$

- Question 12 (Bhamra)
- (a) i. (1 mark)

$$z = 1 + \sqrt{3}i$$

$$= 2e^{i\frac{\pi}{3}}$$

$$= 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

$$\frac{\pi}{3}$$

$$1$$
Results in Equation 1.

- ii. (2 marks)
 - z^7 by De Moivre's Theorem:

$$z^7 = 2^7 \left(\cos\frac{7\pi}{3} + i\sin\frac{7\pi}{3}\right)$$
$$= 128 \left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

• 64z:

$$64z = 64 \times 2\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$
$$= 128\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)$$

Hence $z^7 - 64z = 0$.

- (b) (4 marks)
 - ✓ [1] for formation of simultaneous equations in terms of a and b.
 - \checkmark [1] for solutions to $\sqrt{-8+6i}$
 - \checkmark [1] for applying quadratic formula to complex quadratic.
 - \checkmark [1] for both final solutions.
 - Evaluate $\sqrt{6i-8} = \sqrt{-8+6i}$. Letting $z^2 = -8+6i$ where z = a+ib and then comparing real and imaginary parts:

$$(a+ib)^{2} \equiv -8+6i$$

$$a^{2} - b^{2} + i(2ab) \equiv -8+6i$$

$$\begin{cases} a^{2} - b^{2} = -8 & (1) \\ ab = 3 & (2) \end{cases}$$

Substituting (2) into (1):

$$a^{2} - \left(\frac{3}{a}\right)^{2} = -8$$

$$a^{4} - 9 = -8a^{2}$$

$$a^{4} + 8a^{2} - 9 = 0$$

$$(a^{2} + 9)(a^{2} - 1) = 0$$

$$\therefore a = \pm 1 \qquad b = \pm 3$$

$$\therefore \sqrt{-8 + 6i} = \pm (1 + 3i)$$

• Solving $2z^2 - (3+i)z + 2 = 0$ via the quadratic formula:

$$z = \frac{(3+i) \pm \sqrt{(3+i)^2 - 16}}{4}$$

$$= \frac{(3+i) \pm \sqrt{9+6i-1-16}}{4}$$

$$= \frac{(3+i) \pm \sqrt{-8+6i}}{4}$$

$$= \frac{(3+i) \pm (1+3i)}{4}$$

$$z_1 = \frac{3+i+1+3i}{4} = 1+i$$

$$z_2 = \frac{3+i-1-3i}{4} = \frac{1}{2} - \frac{1}{2}i$$

(c) (2 marks) Let z = a + ib,

$$2\overline{z} - iz = 1 + 4i$$

$$2(a - ib) - i(a + ib) = 1 + 4i$$

$$2a - 2ib - ai + b = 1 + 41$$

$$2a + b - i(a + 2b) = 1 + 4i$$

Equating real and imaginary parts,

$$\begin{cases} 2a + b = 1 & (1) \\ -a - 2b = 4 & (2) \end{cases}$$

Multiplying (1) by 2, and adding to (2):

$$\begin{cases} 4a + 2b = 2 & (1) \times 2 \\ -a - 2b = 4 & (2) \end{cases}$$
$$3a = 6$$
$$a = 2$$

Substitute into (2):

$$-2 - 2b = 4$$
$$-2b = 6$$
$$b = -3$$
$$\therefore z = 2 - 3i$$

- (d) (3 marks)
 - $|Arg(z)| < \frac{\pi}{3}$ draw straight lines angled at $\pm \frac{\pi}{3}$ to positive x axis
 - $z + \overline{z} < 4$: results in region 2x < 4
 - |z| > 2: region outside the circle of radius 2, centre origin

(e) i. (2 marks)

 $\bullet \quad \overrightarrow{OP} = \overrightarrow{OA} + \overrightarrow{AP}.$

Hence $\overrightarrow{OP} = \overrightarrow{OA} + \frac{1}{2}\overrightarrow{AB}$:

$$\overrightarrow{OP} \Rightarrow a + \frac{1}{2}(b - a)$$

$$= \frac{1}{2}(a + b)$$

• Similarly, \overrightarrow{OR} is represented by

$$\frac{1}{2}(c+d)$$

• As M is the midpoint of PR,

$$\begin{split} \overrightarrow{OM} &= \frac{1}{2} \left(\overrightarrow{OP} + \overrightarrow{OR} \right) \\ &\Rightarrow \frac{1}{2} \left(\frac{1}{2} (a+b) + \frac{1}{2} (c+d) \right) \\ &= \frac{1}{4} (a+b+c+d) \end{split}$$

• N is the midpoint of \overrightarrow{QS} , and \overrightarrow{ON} represents

$$\overrightarrow{ON} = \frac{1}{2} \left(\overrightarrow{OQ} + \overrightarrow{OS} \right)$$

$$\Rightarrow \frac{1}{2} \left(\frac{1}{2} (b+c) + \frac{1}{2} (a+d) \right)$$

$$= \frac{1}{4} (a+b+c+d)$$

(1 mark) As M and N arecoincident, the diagonals of PQRSbisect each other. PQRS is a parallelogram.

Question 13 (Sharma)

i. (1 mark) (a)

$$x^3 + 0x^2 + px + q = 0$$

(b)

i. (3 marks)

 \checkmark [1] for each correct constant.

$$(\alpha + \beta + \gamma)^2 = \alpha^2 + \beta^2 + \gamma^2 + 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$

$$\therefore \alpha^2 + \beta^2 + \gamma^2 = (\alpha + \beta + \gamma)^2 - 2(\alpha\beta + \alpha\gamma + \beta\gamma)$$

Finding the elementary symmetric functions,

$$\alpha + \beta + \gamma = 0$$

$$\alpha\beta + \beta\gamma + \alpha\gamma = \frac{p}{1} = p$$

$$\alpha\beta\gamma = -\frac{q}{1} = -q$$

$$\therefore \alpha^2 + \beta^2 + \gamma^2 = (0)^2 - 2(p) = -2p$$

ii. (3 marks)

 \checkmark [1] for identifying new roots of the new equation.

 \checkmark [1] for correct polynomial with roots α^2 , β^2 and γ^2 .

 \checkmark [1] for correct polynomial with roots $\frac{\alpha^2}{-g}$ etc.

$$\frac{\alpha}{\beta \gamma} = \frac{\alpha^2}{\alpha \beta \gamma} \qquad \frac{\beta}{\alpha \gamma} = \frac{\beta^2}{\alpha \beta \gamma} \qquad \frac{\gamma}{\alpha \beta} = \frac{\gamma^2}{\alpha \beta \gamma}$$

Hence, new equation will have roots

$$\frac{\alpha^2}{-q}, \frac{\beta^2}{-q}, \frac{\gamma^2}{-q}$$

In $x^3 + px + q = 0$, let $x \mapsto \sqrt{x}$, which produces roots α^2 , β^2 and γ^2 :

$$(\sqrt{x})^3 + p(\sqrt{x}) + q = 0$$

$$x\sqrt{x} + p\sqrt{x} + q = 0$$

$$\sqrt{x}(x+p) = -q$$

$$x(x+p)^2 = q^2$$

$$x(x^2 + 2px + p^2) = q^2$$

$$x^3 + 2px^2 + p^2x - q^2 = 0$$

Now let $x \mapsto -qx$ to produce the required roots:

$$(-qx)^{3} + 2p(-qx)^{2} + p^{2}(-qx) - q^{2} = 0$$

$$-q^{3}x^{3} + 2pq^{2}x^{2} - p^{2}qx - q^{2} = 0$$

$$\therefore q^{2}x^{3} - 2pqx^{2} + p^{2}x + q = 0$$

$$4-5-7 \equiv A(1+1+2) + 0$$

 $4A = -8$
 $A = -2$

- Let x = 0: $-7 \equiv -2(0+0+2) + (B(0)+C)(0-1)$ $-7 \equiv -4 - C$ C = 3
- Let x=2, $4(2^2) - 5(2) - 7$ $\equiv -2(2^2+2+2)+(2B+3)(2-1)$ $16 - 10 - 7 \equiv -16 + 2B + 3$ 2B = 12B = 6

$$\therefore \frac{4x^2 - 5x - 7}{(x - 1)(x^2 + x + 2)} \equiv \frac{-2}{x - 1} + \frac{6x + 3}{x^2 + x + 2}$$

ii. (2 marks)

 \checkmark [1] for correct integral.

 \checkmark [1] for correct final answer.

$$\int_{-1}^{0} \frac{4x^2 - 5x - 7}{(x - 1)(x^2 + x + 2)} dx$$

$$= \int_{-1}^{0} \left(-\frac{2}{x - 1} + \frac{3(2x + 1)}{x^2 + x + 2} \right) dx$$

$$= -2 \left[\ln(x - 1) \right]_{-1}^{0} + 3 \left[\ln(x^2 + x + 2) \right]_{-1}^{0}$$

By symmetry,

$$\int_{-1}^{0} -\frac{2}{x-1} \, dx = \int_{2}^{3} \frac{2}{x-1} \, dx$$

(Alternatively, use absolute values inside the logarithm)

$$\int_{-1}^{0} \left(-\frac{2}{x-1} + \frac{3(2x+1)}{x^2 + x + 2} \right) dx$$

$$= 2 \left[\ln(x-1) \right]_{2}^{3} + 3 \left[\ln(x^2 + x + 2) \right]_{-1}^{0}$$

$$= 2 \ln 2 + 3 \left(\ln 2 - \ln(1 - 1 + 2) \right)$$

$$= 2 \ln 2$$

(c) i.
$$(2 \text{ marks})$$

 $\cos 3A$
 $= \cos(A + 2A)$
 $= \cos A \cos 2A - \sin A \sin 2A$
 $= \cos A \left(2 \cos^2 A - 1\right) - \sin A \left(2 \sin A \cos A\right)$
 $= 2\cos^3 A - \cos A - 2\left(1 - \cos^2 A\right)\cos A$
 $= 2\cos^3 A - \cos A - 2\cos A + 2\cos^3 A$
 $= 4\cos^3 A - 3\cos A$
 $\therefore \frac{1}{4}\cos 3A = \cos^3 A - \frac{3}{4}\cos A$

Alternatively, use De Moivre's theorem to expand and equate real parts to obtain required result.

ii. (2 marks) $\checkmark \quad [1] \text{ for } x^3 - 6x \text{ in terms of } \cos A.$ $\checkmark \quad [1] \text{ for correctly showing required result.}$

$$x = 2\sqrt{2}\cos A$$

$$x^3 = 16\sqrt{2}\cos^3 A$$

$$\therefore x^3 - 6x = 16\sqrt{2}\cos^3 A - 6\left(2\sqrt{2}\cos A\right)$$

$$= 16\sqrt{2}\cos^3 A - 12\sqrt{2}\cos A$$

$$= 4\sqrt{2}\left(4\cos^3 A - 3\cos A\right)$$

$$= 4\sqrt{2}\cos 3A$$
If $\cos 3A = -\frac{1}{2\sqrt{2}}$,
$$x^3 - 6x = 4\sqrt{2}\left(-\frac{1}{2\sqrt{2}}\right)$$

Hence $x^3 - 6x = -2$ has a solution of $x = 2\sqrt{2}\cos A$ provided $\cos 3A = -\frac{1}{2\sqrt{2}}$.

iii. (2 marks)
✓ [1] for first quadrant related angle.
✓ [1] for all three roots.

$$\cos 3A = -\frac{1}{2\sqrt{2}}$$
$$3A = 1.93 \cdots$$

 $3A = 1.93 \cdots$ lies in the 2nd quadrant. The first quadrant (related) angle is

$$\pi - 1.93 \cdots = 1.209 \cdots$$

Hence,

$$3A = \pi - 1.209 \cdots \qquad (2\text{nd quadrant})$$
 or $\pi + 1.209 \cdots \qquad (3\text{rd quadrant})$ or $3\pi - 1.209 \cdots \qquad (6\text{th quadrant})$
$$A = \frac{\pi - 1.209 \cdots}{3}, \frac{\pi + 1.209}{3}, \frac{3\pi - 1.209 \cdots}{3}$$

$$\therefore x = 2\sqrt{2}\cos\left(\frac{\pi - 1.209 \cdots}{3}\right) \approx 2.2618 \cdots$$
 or $2\sqrt{2}\cos\left(\frac{\pi + 1.209 \cdots}{3}\right) \approx 0.3399 \cdots$ or $2\sqrt{2}\cos\left(\frac{3\pi - 1.209 \cdots}{3}\right) \approx -2.6017 \cdots$

Question 14 (Sharma)

(a) i. (α) (1 mark)

$$\frac{x^2}{3+p} + \frac{y^2}{8+p} = 1$$

If the conic is an ellipse, then both of 3 + p > 0 and 8 + p > 0:

$$3 + p > 0$$
 $8 + p > 0$ $p > -3$ $p > -8$

Hence p > -3 for both inequalities to be satisfied.

 (α) (2 marks)

✓ [1] for the first condition p > -3 or p < -8, and explanation of which represents the most restrictive condition.

 \checkmark [1] for rejecting the invalid solution.

If the conic is a hyperbola, then either of the following pairs of inequalities must hold true simultaneously:

$$- 3 + p > 0 \text{ and } 8 + p < 0$$

$$p > -3$$
 and $p < -8$

which is not possible to hold simultaneously.

$$-3+p<0 \text{ and } 8+p>0$$

$$p < -3$$
 and $p > -8$

Hence -8 .

ii. (2 marks)

 \checkmark [-1] for each new error.

$$p = -4: \qquad \frac{x^2}{3-4} + \frac{y^2}{8-4} = 1$$
$$\frac{x^2}{-1} + \frac{y^2}{4} = 1$$
$$\therefore \frac{y^2}{4} - x^2 = 1$$

Applying relationship for eccentricity:

$$b^{2} = a^{2} (e^{2} - 1)$$

$$1 = 4 (e^{2} - 1)$$

$$e^{2} = \frac{5}{4}$$

$$e = \frac{\sqrt{5}}{2}$$

Finding the foci with a=2 and $e=\frac{\sqrt{5}}{2}$:

$$S\left(0, \pm ae\right) = \left(0, \pm\sqrt{5}\right)$$

Finding the directricies:

$$y = \pm \frac{a}{e} = \pm \frac{2}{\frac{\sqrt{5}}{2}} = \pm \frac{4}{\sqrt{5}}$$

iii. (2 marks)

 \checkmark [-1] for each new error.

i. (2 marks)

(b)

$$y = \frac{1}{x}$$

$$\frac{dy}{dx} = -x^{-2}\Big|_{x=t} = -\frac{1}{t^2}$$

Equation of the tangent at $(t, \frac{1}{t})$ via the point-gradient formula:

$$\frac{y - \frac{1}{t}}{x - t} = -\frac{1}{t^2}$$
$$t^2y - t = -x + t$$
$$x + t^2y = 2t$$

ii. (3 marks)

 \checkmark [1] for correct equation of the normal at $(t, \frac{1}{t})$.

- \checkmark [1] for correct coordinates of A and (c)
- \checkmark [1] for required proof.
- The equation of the normal at $(t, \frac{1}{t})$ via the point-gradient formula:

$$\frac{y - \frac{1}{t}}{x - t} = t^2$$

$$y - \frac{1}{t} = t^2 x - t^3$$

$$ty - 1 = t^3 x - t^4$$

$$t^3 x - ty = t^4 - 1$$

• At x = 0, the tangent is at

$$0 + t^{2}y = 2t$$
$$y = \frac{2}{t}$$
$$\therefore A\left(0, \frac{2}{t}\right)$$

• At y = 0, the normal is at

$$t^{3}x - 0 = t^{4} - 1$$
$$x = \frac{t^{4} - 1}{t^{3}}$$
$$\therefore B\left(\frac{t^{4} - 1}{t^{3}}, 0\right)$$

• The midpoint of AB:

$$\left(\frac{\frac{t^4-1}{t^3}+0}{2}, \frac{\frac{2}{t}+0}{2}\right) = \left(\frac{t^4-1}{2t^3}, \frac{1}{t}\right)$$
$$\therefore x_M = \frac{t^4-1}{2t^3} \qquad y_M = \frac{1}{t}$$

Substituting $t = \frac{1}{y}$ into the x equation:

$$x = \frac{\left(\frac{1}{y}\right)^4 - 1}{2\left(\frac{1}{y}\right)^3} = \frac{\frac{1}{y^4} - 1}{\frac{2}{y^3}} \underset{\times y^4}{\times y^4}$$
$$= \frac{1 - y^4}{2y}$$

(3 marks)

- \checkmark [1] for obtaining m_{PQ} .
- \checkmark [1] for using the point gradient formula for the equation of PQ.
- \checkmark [1] for final solution.

$$\begin{cases} x_P = a\cos\alpha & x_Q = a\cos\beta \\ y_P = b\sin\alpha & y_Q = b\sin\beta \end{cases}$$

The gradient of the chord PQ:

$$m_{PQ} = \frac{b \sin \beta - b \sin \alpha}{a \cos \beta - a \cos \alpha} = \frac{b (\sin \beta - \sin \alpha)}{a (\cos \beta - \cos \alpha)}$$

Using the point-gradient formula, the equation of PQ is:

$$\frac{y - b\sin\alpha}{x - a\cos\alpha} = \frac{b(\sin\beta - \sin\alpha)}{a(\cos\beta - \cos\alpha)}$$

As the focal chord passes through (ae, 0):

$$\frac{-b\sin\alpha}{ae - a\cos\alpha} = \frac{b(\sin\beta - \sin\alpha)}{a(\cos\beta - \cos\alpha)}$$

$$-\sin\alpha(\cos\beta - \cos\alpha) = (e - \cos\alpha)(\sin\beta - \sin\alpha)$$

$$e = \frac{-\sin\alpha\cos\beta + \sin\alpha\cos\alpha}{\sin\beta - \sin\alpha} + \cos\alpha$$

$$= \frac{-\sin\alpha\cos\beta + \sin\alpha\cos\alpha + \sin\beta\cos\alpha - \sin\alpha\cos\alpha}{\sin\beta - \sin\alpha}$$

$$= \frac{\sin\beta\cos\alpha - \sin\alpha\cos\beta}{\sin\beta - \sin\alpha}$$

$$= \frac{\sin(\beta - \alpha)}{\sin\beta - \sin\alpha}$$

Question 15 (Lam)

(a) (3 marks)

- ✓ [1] for the correct working, leading to the curved surface area of the cylinder.
- \checkmark [1] for the applying integration by parts.
- \checkmark [1] for the final answer.

- Surface area of cylinder: $SA = 2\pi rh$
- Radius of each individual cylinder:

$$r = x$$

• Height of each individual cylinder:

$$h = y$$

• Hence,

$$\delta V = \sum A \, \delta x$$

$$= \sum 2\pi xy \, \delta x$$

$$= 2\pi \sum x \ln x \, \delta x$$

Taking $\delta x \to 0$:

$$V = 2\pi \lim_{\delta x \to 0} \sum_{x=1}^{x=e} x \ln x \, \delta x$$

$$= 2\pi \int_{1}^{e} x \ln x \, dx$$

$$= \ln x \quad dv = x$$

$$du = \frac{1}{x} \quad v = \frac{1}{2}x^{2}$$

$$\therefore V = 2\pi \left(\left[\frac{1}{2}x^{2} \ln x \right]_{1}^{e} - \int_{1}^{e} \frac{1}{2}x^{2} \cdot \frac{1}{2} dx \right)$$

$$= 2\pi \left(\frac{1}{2}e^{2} - \frac{1}{2} \left[\frac{1}{2}x^{2} \right]_{1}^{e} \right)$$

$$= 2\pi \left(\frac{1}{2}e^{2} - \frac{1}{4}e^{2} + \frac{1}{4} \right)$$

$$= \frac{\pi}{2} \left(e^{2} + 1 \right)$$

- (b) (3 marks)
 - ✓ [1] for similarity ratio relationship in $\triangle ABC$.
 - \checkmark [1] for correct area expression.
 - \checkmark [1] for final answer.

• From the diagram: at a point x along the horizontal, the corresponding vertical value is y. As it is a quarter circle,

$$y = \sqrt{r^2 - x^2}$$

which becomes the height of the rectangle.

• Drawing $\triangle ABC$ in the 2D plane:

From similar triangles,

$$\frac{r}{\frac{a}{2}} = \frac{x}{\frac{z}{2}}$$

$$\therefore \frac{2r}{a} = \frac{2x}{z}$$

$$z = \frac{ax}{r}$$

• From the area of the rectangles,

$$A = bh = zy = \frac{ax}{r}\sqrt{r^2 - x^2}$$

the volume is the sum of these areas:

$$\begin{split} V &= \lim_{\delta x \to 0} \sum_{x=0}^{x=r} A \, \delta x = \int_0^r \frac{ax}{r} \sqrt{r^2 - x^2} \, dx \\ &= \frac{a}{r} \times \left(-\frac{1}{2} \right) \int_0^r -2x \left(r^2 - x^2 \right)^{\frac{1}{2}} \, dx \\ &= -\frac{a}{2r} \left[\frac{2}{3} \left(r^2 - x^2 \right)^{\frac{3}{2}} \right]_0^r \\ &= -\frac{a}{2r} \left(0 - \left(r^2 \right)^{\frac{3}{2}} \right) = \frac{ar^2}{3} \end{split}$$

(c) i. (2 marks)

✓ [1] for separation of variables to obtain $\tan^{-1} x = -t + C_1$.

 \checkmark [1] for final required result.

$$F = m\ddot{x} = -\left(v + v^3\right)$$

As m=1,

$$\ddot{x} = v \frac{dv}{dx} = -\left(v + v^3\right)$$
$$\frac{1}{1 + v^2} dv = -dx$$

Integrating both sides,

$$\tan^{-1} v = -x + C_1$$

When t = 0, v = Q, x = 0.

$$\therefore C_1 = \tan^{-1} Q$$
$$\therefore x = \tan^{-1} Q - \tan^{-1} v$$

Letting

$$\alpha = \tan^{-1} Q \qquad \beta = \tan^{-1} v$$

$$\tan \alpha = Q \qquad \tan \beta = v$$

$$\therefore \tan x = \tan (\alpha - \beta)$$

$$= \frac{\tan \alpha - \tan \beta}{1 + \tan \alpha \tan \beta}$$

$$= \frac{Q - v}{1 + Qv}$$

$$\therefore x = \tan^{-1} \left(\frac{Q - v}{1 + Qv}\right)$$

ii. (3 marks)

 \checkmark [1] for correct constants in the partial fraction decomposition.

 \checkmark [1] for obtaining the correct primitive.

 \checkmark [1] for final required result.

$$\frac{dv}{dt} = -v - v^3$$
$$\frac{dv}{v(1+v^2)} = -dt$$

Applying the partial fraction decomposition,

$$\underbrace{\frac{1}{v(1+v^2)} \equiv \frac{A}{v} + \frac{Bv+C}{1+v^2}}_{\times v(1+v^2)}$$

$$1 \equiv A(1+v^2) + v(Bv+C)$$

- When v = 0, A = 1 by inspection.
- When v = 1,

$$1 \equiv 1(1+1) + 1(B+C)$$
$$1 \equiv 2 + B + C$$
$$\therefore B + C = -1$$

• When v = 2,

$$1 \equiv 1(1+4) + 2(2B+C)$$
$$1 \equiv 5 + 4B + 2C$$
$$4B + 2C = -4$$
$$2B + C = -2$$

• Solving simultaneously,

$$\begin{cases} B + C = -1 & (1) \\ 2B + C = -2 & (2) \end{cases}$$

 $\therefore C = 0$

(2)
$$-$$
 (1):
$$B = -2 - (-1) = -1$$

$$\int \frac{dv}{v(1+v^2)} = \int \left(\frac{1}{v} - \frac{v}{1+v^2}\right) dv$$
$$= \int -dt$$
$$\ln v - \frac{1}{2}\ln\left(1+v^2\right) = -t + C_2$$

When t = 0, v = Q:

Question 16 (Lam)

(a) i. (1 mark)

$$C_2 = \ln Q - \frac{1}{2} \ln (1 + Q^2)$$

$$\ln v - \frac{1}{2} \ln (1 + v^2)$$

$$= -t + \ln Q - \frac{1}{2} \ln (1 + Q^2)$$

$$t = \ln Q - \ln v$$

$$+ \frac{1}{2} \left(\ln (1 + v^2) - \ln (1 + Q^2) \right)$$

$$= \ln \frac{Q}{v} + \frac{1}{2} \ln \left(\frac{1 + v^2}{1 + Q^2} \right)$$

$$= \frac{1}{2} \ln \frac{Q^2}{v^2} + \frac{1}{2} \ln \left(\frac{1 + v^2}{1 + Q^2} \right)$$

$$= \frac{1}{2} \ln \left(\frac{Q^2 (1 + v^2)}{v^2 (1 + Q^2)} \right)$$

 \checkmark [1] for e^{2t} as the subject.

 \checkmark [1] for final result required.

$$t = \frac{1}{2} \ln \left(\frac{Q^2 (1 + v^2)}{v^2 (1 + Q^2)} \right)$$

$$2t = \ln \left(\frac{Q^2 (1 + v^2)}{v^2 (1 + Q^2)} \right)$$

$$\underbrace{e^{2t} = \frac{Q^2 (1 + v^2)}{v^2 (1 + Q^2)}}_{\times v^2 (1 + Q^2)}$$

$$e^{2t} v^2 + e^{2t} Q^2 v^2 = Q^2 + Q^2 v^2$$

$$v^2 (e^{2t} + e^{2t} Q^2 - Q^2) = Q^2$$

$$\therefore v^2 = \frac{Q^2}{e^{2t} (1 + Q^2) - Q^2} \frac{\times e^{-2t}}{\times e^{-2t}}$$

$$= \frac{Q^2 e^{-2t}}{(1 + Q^2) - Q^2 e^{-2t}}$$

iv. (2 marks)

$$t \to \infty, e^{-2t} \to 0$$

$$\therefore v^2 \to \frac{0}{0 - Q^2} = 0$$

$$x \to \tan^{-1}\left(\frac{Q - 0}{1 + Q(0)}\right) = \tan^{-1}Q$$

ii. (2 marks)

$$y = f(|x|)$$

iii. (2 marks)

- \checkmark [-1] for each new error/feature not shown. Features are:
 - Shape (both branches)
 - Open circle at x = 0 for negative branch
 - y asymptote of $y = \frac{1}{e}$

$$y = e^{f(x)}$$

Asymptotes:

• $x \to \infty$:

$$y = f(x) = -1 + \frac{1}{x} \rightarrow -1^{+}$$
$$\therefore y = e^{f(x)} \rightarrow e^{-1} = \left(\frac{1}{e}\right)^{+}$$

• $x \to -\infty$:

$$y = f(x) = -1 + \frac{1}{x} \to -1^{-1}$$
$$\therefore y = e^{f(x)} \to e^{-1} = \left(\frac{1}{e}\right)^{-1}$$

• $x \to 0^-$:

$$y = f(x) \to -\infty$$
$$\therefore y = e^{f(x)} \to 0^+$$

- $\sqrt{ }$ [-1] for each new error/feature not shown. Features are:
 - Shape (both branches)
 - Smooth curve at (1,0)
 - x asymptote of x = 0
- \checkmark [1] for description of the behaviour at x = 1, based on graph drawn.

$$y^2 = f(x)$$

• $y = \sqrt{f(x)}$ requires $f(x) \ge 0$:

$$\frac{1-x}{x} \ge 0$$

$$\frac{1}{x} - 1 \ge 0$$

$$\frac{1}{x} \ge 1$$

$$\therefore 0 < x \le 1$$

Hence the domain is 0 < x < 1.

• Also, the other branch is

$$y = -\sqrt{f(x)}$$

Same domain, but below x axis.

• At x = 1, the curve reaches its maximum x value/at the upper limit of its domain and has a **vertical tangent**.

(b) i. (1 mark)
$$\checkmark$$
 [0] if $y = x\sqrt{x}$ (without \pm symbol)

$$\begin{cases} x = t^2 & \Rightarrow x^3 = t^6 \\ y = t^3 & \Rightarrow y^2 = t^6 \end{cases}$$

Equating and removing the parameter,

$$y^2 = x^3$$

ii. (2 marks)

Finding the gradient of PQ:

$$m_{PQ} = \frac{t_1^3 - t_2^3}{t_1^2 - t_2^2}$$

$$= \frac{(t_1 - t_2)(t_1^2 + t_1t_2 + t_2^2)}{(t_1 - t_2)(t_1 + t_2)}$$

$$= \frac{t_1^2 + t_1t_2 + t_2^2}{t_1 + t_2}$$

Using the point-gradient formula,

$$\frac{y-t_1^3}{x-t_1^2} = \frac{t_1^2 + t_1t_2 + t_2^2}{t_1 + t_2}$$

$$(y-t_1^3)(t_1 + t_2) = (x-t_1^2)(t_1^2 + t_1t_2 + t_2^2)$$

$$y(t_1 + t_2) - t_1^4 - t_2^3t_2$$

$$= x(t_1^2 + t_1t_2 + t_2^2)$$

$$- t_1^4 - t_2^3t_2 - t_1^2t_2^2$$

$$\therefore (t_1 + t_2)y - (t_1^2 + t_1t_2 + t_2^2)x + t_1^2t_2^2 = 0$$

iii. (1 mark) When $t_1 = t_2$, the chord becomes a tangent.

$$2t_1y - (t_1^2 + t_1^2 + t_1^2)x + t_1^4 = 0$$
$$2t_1y - 3t_1^2x + t_1^4 = 0$$
$$\therefore 2y - 3tx + t^3 = 0$$

iv. (4 marks)

- \checkmark [1] for differentiating w.r.t. t and checking for stationary points.
- \checkmark [1] for identifying cubic in terms of t will have three roots via fundamental theorem of algebra.
- \checkmark [1] each for testing values of $f(\pm \sqrt{x_0})$.

✓ [1] for final reasoning why there are three real roots and therefore three unique tangents.

Tangent to any point $R(x_0, y_0)$, where $x_0^3 > y_0^2 > 0$ is

$$t^3 - 3tx_0 + 2y_0 = 0$$

Letting $f(t) = t^3 - 3tx_0 + 2y_0$. There are up to three unique solutions to this equation in terms of t. Need all three to be real and no complex conjugate pairs. Differentiating,

$$f'(t) = 3t^2 - 3x_0 = 3(t^2 - x_0)$$

Hence stationary points are located at $t = \pm \sqrt{x_0}$. Check actual $f(\sqrt{x_0})$ and $f(-\sqrt{x_0})$:

$$f(\sqrt{x_0}) = (\sqrt{x_0})^3 - 3(\sqrt{x_0})x_0 + 2y_0$$

$$= -2x_0\sqrt{x_0} + 2y_0$$

$$= -2\sqrt{x_0^3} + 2y_0$$

$$= 2(y_0 - \sqrt{x_0^3})$$

As
$$x_0^3 > y_0^2 > 0$$
, then $\sqrt{x_0^3} > y_0$
 $\therefore f(\sqrt{x_0}) < 0$

Testing
$$f\left(-\sqrt{x_0}\right)$$
,

$$f(-\sqrt{x_0}) = (-\sqrt{x_0})^3 - 3(-\sqrt{x_0})x_0 + 2y_0$$
$$= 2x_0\sqrt{x_0} + 2y_0$$
$$= 2\sqrt{x_0^3} + 2y_0$$
$$= 2(\sqrt{x_0^3} - y_0)$$

As
$$x_0^3 > y_0^2 > 0$$
, then $\sqrt{x_0^3} > y_0$
 $\therefore f(-\sqrt{x_0}) > 0$

In f(t), one of the y values of the stationary points is negative and the other is the positive. Hence they are on opposing sides of the horizontal axis, and $t^3 - 3tx + y = 0$ always has three real solutions for all values of (x_0, y_0) where $x_0^3 > y_0^2 > 0$ and three unique tangents.